TANDBERG television

Part of the Ericsson Group

"It's Not Dead Yet!" MPEG-2 Video Coding Efficiency Improvements

National Association of Broadcasters
Broadcast Engineering Conference
April 22, 2009

Why improve MPEG-2 Video coding?

- Industry "buzz" over the past ~5 years has been new compression technologies to replace the ubiquitous MPEG-2 Video
- Yet, there are still over 1 billion MPEG-2 only STBs and DTV sets
 - Multichannel programming video distributor (MPVD) commercial justification to migrate MPEG-2 SD only STBs to MPEG-4 AVC already questioned
 - Some world regions have delayed entry into HD DTH distribution due to economic conditions
 - USA & other OTA broadcasters required by government regulation and many millions of DTV receivers to use MPEG-2 Video format only
- And, DTH bandwidth is a "scarce resource"
 - How to support new ATSC Mobile DTV service without impacting existing services?

Existing MPEG-2 Video encoders

Pre-processing & 2-stage motion estimation

Multiple look-ahead encoders

Rate Distortion Optimization (RDO)

Conventional MPEG-2 Video mode selection

Multipoint interpolated RDO

- Adds dozens of operating points with higher and lower quality references
- Interpolation between operating points to deliver the most optimal and exhaustive decision possible
- Dozens of encodes & decodes, performed in parallel

Comparison of bit-rate efficiency for real-time sports

Sports Material Experiment

CBR test sequences

- Mobile and Calendar
- Soccer
- Kiel harbor

Bit-rate savings in field/frame mode

Bit-rate saving field/frame mode

Bit-rate savings in frame only mode

Bit-rate saving frame mode

Stat mux test sequences

- Sport, Football Sport, Rugby Film
- Studio, Sitcom Studio, Music video

Revolutionary optimized stat mux vs. traditional stat mux

	sport1	sport2	film3	studio4	studio5
Revolutionary Optimized (15% less bit-rate)	68.17	60.16	74.9	62.69	74.66
Traditional MPEG-2	64.78	57.96	75.07	63.03	74.3
DVQ diff	3.39	2.2	-0.17	-0.34	0.36

	sport1	sport2	film3	studio4	studio5
Revolutionary Optimized (15% less bit-rate)	75.4	66.02	80.92	71.96	76.61
Traditional MPEG-2	70.77	63	78.18	68.01	77.56
DVQ diff	4.63	3.02	2.74	3.95	-0.95

•
$$GOP = 12$$

•
$$GOP = 36$$

DVQ comparison of statmux, GOP length 12

DVQ Comparison of Statmux (GOP length 12)

- Traditional (GOP12) @ 12.5Mbps
- Revolutionary Optimized (GOP12) @ 10.625Mbps

DVQ comparison of statmux, GOP length 36

DVQ Comparison of Statmux (GOP length 36)

- Traditional (GOP36) @ 12.5Mbps
- Revolutionary Optimized (GOP36) @ 10.625Mbps

Conclusions/Summary

- With advances in technology (Moore's Law) and new algorithms applied, MPEG-2 Video encoding can be improved/optimized greatly over all existing MPEG-2 encoder implementations
- Picture quality measurements demonstrate that the "revolutionary optimized" MPEG-2 Video encoder has achieved significant bit-rate reductions, with minimum savings in excess of 15%
- With over 1 billion MPEG-2 Video legacy receivers fielded, regulatory and practical requirements to continue MPEG-2 broadcasting, and the need to support more services (HD, mobile) in existing bandwidth, the need to improve MPEG-2 Video compression is critical

Acknowledgements

- Many thanks to my TANDBERG Television colleagues for their assistance with this paper
 - -Alois Bock
 - -Matthew Compton

Thank you ... Questions?

